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Abstract

Coming back on Thermodynamics, it is possible to consider the situation corresponding to different fundamental statements made
from observations of the earlier power engines. An alternative form of the Kelvin–Planck’s statement for the Second Law of Thermo-
dynamics is derived, from which parallel results to those of the well established Thermodynamics can be obtained. Special attention is
given to the work transfer interactions undergone by Thermodynamic systems experiencing volume-change instead of heat transfer inter-
actions. It is thus possible the construction of a parallel structure for Thermodynamics, here called Pressodynamics, with the volume-
change work transfer interactions, the absolute pressure and the volume playing the roles usually played by the heat transfer interactions,
the absolute temperature and entropy in the well established Thermodynamics. The irreversibility associated with the volume-change
work transfer interactions gives rise to a volume generation, in a parallel way with the entropy generation in the well established Ther-
modynamics associated with the heat transfer interactions. This volume generation is associated with the lost available mechanical work
related with the volume-change work transfer interactions. The obtained results lead to the expansion of the Universe, in a parallel way
with the entropy increase of the Universe as given by the well established Thermodynamics. A natural conclusion of the present work is
thus the unification of the Thermodynamic and Cosmological time arrows. Some simple application examples are presented. Implica-
tions over the usual relations used in Thermodynamics are presented in a companion paper.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Our present understanding of Thermodynamics, and
especially of the First and Second Laws of Thermodynam-
ics, is a direct consequence of the statements made by the
pioneers from their basic observations of the earlier ther-
mal engines. The principle of energy conservation, embod-
ied by the First Law of Thermodynamics, sounds
something familiar, and it is easily accepted on the teach-
ing/learning process. On the other hand, some statements
of the Second Law of Thermodynamics, as well as the con-
cept of entropy, sound alien. That some processes cannot
occur spontaneously is obvious from our everyday basic
observations, but the statement of the possible processes
in terms of changes of entropy is not so obvious.
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Looking back, it can be seen that the property entropy
was introduced in Thermodynamics as a need from the
statements of the basic observations made by the pioneers.
If the statements of these observations were somewhat dif-
ferent, the role of entropy in the well established Thermo-
dynamics were played by volume, a much more familiar
property than entropy, for systems experiencing volume-
change work transfer interactions. The implications of this
different formulation extend from the analysis of simple
engineering systems to our better understanding of the
Universe.

In the work presented by Bejan [1,2], imagining a people
familiar with properties temperature and entropy, and with
the field of heat transfer, the normal development of Ther-
modynamics leads to the volume as a new property, similarly
to what happens with entropy in the well established Ther-
modynamics. It is also presented an equivalent Kelvin–
Planck’s statement of the Second Law of Thermodynamics,
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Nomenclature

A,B systems
E energy
f function
N number of Pressure Reservoirs
P absolute pressure
Q heat transfer interaction
S entropy
t time
T absolute temperature
V volume
W work transfer interaction

Greek symbols

g efficiency
p empirical pressure
/ function
U function

Subscripts

A,B subsystems
C Carnot’s or Carnot’s alternative cycle
e environment
gen generation
n Pressure Reservoir’s number
P pressure
R reservoir
rev reversible
T temperature
0 reference state; environment

Superscript

d deformation (volume-change)
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and a two axioms condensation of the First and Second
Laws, in a form similar to that proposed by Carathéodory
for the well established Thermodynamics. However, this
alternative approach was not explored in order to obtain
general statements similar to those of the well established
Thermodynamics.

In this work, the statements derived from the basic
observations of the power engines are different from the
well established ones, the volume emerging as the property
from which are stated the possible processes undergone by
closed systems experiencing volume-change work transfer
interactions. The volume generation resulting from irre-
versibility in the volume-change work is easily interpreted
as being associated with the lost available mechanical
work, both in work producing or work absorbing systems.
The volume is thus, in the presented formulation, the coun-
terpart of entropy in the well established Thermodynamics
for systems experiencing volume-change work transfer
interactions.

The developments are made in a form similar to that of
recent textbooks on Engineering Thermodynamics [2–4],
the volume-change work transfer interactions and the
absolute pressure replacing, respectively, the heat transfer
interactions and the absolute temperature. Even without
the complete development of a parallel structure relative
to that of the well established Thermodynamics, the dual
(work transfer interaction, absolute pressure) is still being
used in order to thermodynamically optimize some pres-
sure-driven engineering devices [5].

A very important result is that irreversibility associated
with the volume-change work transfer interactions leads to
a volume generation, and thus to a volume increase of the
Universe. This result is obtained from Thermodynamic
arguments only, what was confirmed from Cosmological
analysis and arguments [6]. In this way, the Thermody-
namic and the Cosmological time arrows are unified, what
is one of the most important results of the present work.
Based on this result, to the Clausius statement saying that
the entropy of the Universe is increasing can be added the
one saying that the volume of the Universe is also
increasing.

Another important aspect is that the parallel structure
developed in this work involves volume instead entropy,
volume being a much more familiar and ease to interpret
variable. This is an advantage when compared with prop-
erty entropy, many times taken as an obscure quantifiable
property, the presented developments and interpretations
corresponding to an effective added value towards a
better understanding of many aspects related with the Sec-
ond Law of Thermodynamics and entropy. This parallel
structure represents thus an effectively added pedagogical
value for a better understanding of Thermodynamics. No
any of the presented arguments are in contradiction with
the well established Thermodynamics, but an effective addi-
tion is made to the well established Thermodynamics.

The developments presented in this work are restricted
to an alternative form of the Second Law of Thermody-
namics that applies to closed systems experiencing
volume-change work transfer interactions, and to the pre-
sentation of some simple example problems including vol-
ume generation analysis. Additional developments, to
incorporate the volume generation concept into the well
established Thermodynamics are presented in a companion
paper [7]. In this companion paper it is also presented, for
the first time, the demonstration why the Fundamental
Relation of Thermodynamics for simple Thermodynamic
systems applies both for reversible and irreversible
processes.
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2. The First Law of Thermodynamics for closed systems

The energy conservation principle embodied by the First
Law of Thermodynamics, in the form of an equation for an
infinitesimal process experienced by a closed system, reads

dE ¼ dQþ dW ð1Þ
where E is the energy (a property) of the system under anal-
ysis, and dQ and dW are, respectively, the heat and work
energy transfer interactions of the system with its sur-
roundings. The work transfer interaction is assumed to
be positive when it is an energy incoming to the system
and negative when it is an energy outcome from the system
(rational sign convention).

The volume-change work transfer interaction involved
when the system’s boundary moves reversibly, against or
driven by the system’s pressure, is evaluated as

dW rev ¼ �PdV ð2Þ
where P is the absolute pressure at the system boundary
where the work transfer interaction takes place, and dV

is the volume-change experienced by the system, associated
with this volume-change work transfer interaction. Work
given to the system ðdW > 0Þ compresses the system
ðdV < 0Þ, and work given by the system ðdW < 0Þ expands
the system ðdV > 0Þ.

A reversible process, in what concerns the volume-
change work transfer interactions, means that the process
is slow enough so that the pressure is uniform through
the overall system (a mass of fluid), and the state of the sys-
tem, at any instant in time, is described by a single and well
defined point in a PV diagram [2]. If, instead, the pressure
cannot be taken as uniform, it is said to be an irreversible
process in what concerns the volume-change work transfer
interactions. This is the case of many actual volume-change
processes, which are markedly unsteady and with associ-
ated non-uniformities on the Thermodynamic variables,
and in particular on pressure.
3. Thermodynamics and Pressodynamics

In the well established Thermodynamics, the heat trans-
fer interactions and the temperature are essential in the
Carnot’s cycle statement, as well as the concept of absolute
Temperature (or Heat) Reservoir. The property entropy,
derived from these concepts, emerges as the adequate one
to state the possible and impossible processes and thus
the one-way behavior of the Universe, whose entropy is
increasing.

The primary concepts of Carathéodory’s axiomatic for-
mulation are work transfer and adiabatic boundary, with
the heat transfer interaction being a derived concept,
evaluated as dE � dW . The absolute temperature and
entropy are also derived properties. In the well established
Thermodynamics, these derived concepts are of greatest
significance. Evaluating the entropy generation in a process
it is possible quantify how perfect (reversible) it is, taking
into account all the possible irreversibilities, the entropy
generation being closely related to the concept of lost avail-
able work due to irreversibility (of any nature) [8], and to
the statement if a process is possible or not.

We can imagine the pioneers searching for mechanical
work from power engines, from the motion of a device
driven by a pressure difference. The work transfer inter-
action in volume-changing systems can be understood as
a direct consequence of a pressure difference and not of
the heat supply to (or heat subtraction from) the power
engine. This heat addition (or subtraction) is a mere way
to change the temperature of the operating fluid and
thus its specific volume, making possible to have higher
and lower pressures where and when desired. The work
transfer interaction in volume-changing systems can be
understood as a direct consequence of a pressure differ-
ence (similarly to what happens with the heat transfer
interaction as a direct consequence of a temperature dif-
ference) and not of the heat supply to the power engine.
Obviously, for an energetic analysis, it is of primary
importance the relation between the heat needed to feed
a thermal engine for a given work supply. However, for
the present purposes, it suffices to consider the work
transfer interaction as the volume-change work associ-
ated with a pressure difference.

An alternative form of the Second Law of Thermo-
dynamics can be obtained with the volume-change
work transfer interactions and the absolute pressure
replacing the heat transfer interactions and the absolute
temperature, the volume emerging as the adequate
property to play the role played by entropy in the well
established Thermodynamics. We can thus speak about
Pressodynamics instead of Thermodynamics, even if
Pressodynamics is relevant for systems experiencing vol-
ume-change work transfer interactions only, and the
volume generation is related with irreversibilities associ-
ated with the volume-change work transfer interactions
only.

The parallel structures of Thermodynamics and of the
here proposed Pressodynamics are sketched in Table 1,
some rows appearing from the developments presented in
what follows.

4. Alternative form of the Second Law of Thermodynamics

for a closed system experiencing volume-change work

transfer interactions

Following the usual structure, the developments are
made from a cycle executed by a closed system while
in communication with only one Pressure Reservoir to
a cycle executed while in communication with any num-
ber of Pressure Reservoirs, ending with a process exe-
cuted while in communication with any number of
Pressure Reservoirs.



Table 1
Parallel structures of Thermodynamics and Pressodynamics

Structure Thermodynamics Pressodynamics

Fundamental concepts Heat transfer interaction
Absolute temperature

Volume-change work transfer
interaction
Absolute pressure

Second Law for a closed system executing an integral number of cycles while in
communication with no more than one reservoir

H
dQ

� �
1RT 6 0 orH

dW
� �

1RT P 0

H
dQ

� �
1RP 6 0 or

H
dW

� �
1RP P 0a

Type of reservoir Temperaturea Pressurea

Fundamental reversible cycle Rectangular cycle on a TS

diagram (Carnot’s cycle)
Rectangular cycle on a PV diagram
(alternative Carnot’s cycle)a

Statement of Second Law for an arbitrary closed system executing a cycle while
in communication with two reservoirs

�Q2

Q1

� �
P �Q2

Q1

� �
rev

W 2

�W 1

� �
P W 2

�W 1

� �
rev

Efficiency of the fundamental reversible cycle gT ;rev ¼ 1� T 2

T 1
gP ;rev ¼ 1� P 2

P 1

Efficiency of reversible and irreversible cycles gT 6 gT ;rev gP 6 gP ;rev

Absolute scale T ¼ 273:16 � Q
Q 273:16Kð Þ

� �
rev

P ¼ 611:3 � W
W ð611:3 PaÞ

� �
rev

a

Statements of Second Law for an arbitrary closed system executing a cycle
while in communication with any number of reservoirs

PN
n¼1

Qn
T n
6 0

PN
n¼1

W n
P n

P 0

Clausius inequality
H dQ

T 6 0
H
� dW

P 6 0

Derived property from Second Law dS ¼ dQrev

T dV ¼ � dW rev

P

Strength of irreversibility Sgen ¼ ðS2 � S1Þ �
R 2

1
dQ
T P 0 V gen ¼ ðV 2 � V 1Þ �

R 2
1 � dW

P P 0

a Entries found also in Bejan [1,2].
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4.1. Cycle in communication with only one Pressure

Reservoir

The Kelvin–Planck’s statement of the Second Law of
Thermodynamics reads ‘‘It is impossible for any system
to operate in a Thermodynamic cycle and deliver a net
amount of work to its surroundings while in contact with
only one Thermal Reservoir” or, in symbolsI

dW
� �

1RT

P 0 ð3Þ

From the First Law of Thermodynamics, Eq. (1), Qcycle ¼
�W cycle, and for any reversible power cycle
ðW cycle < 0Þ Qcycle > 0, Qcycle > 0 being given by the en-
closed area of the (clockwise) cycle in a TS diagram, owing
dQrev ¼ T dS. On a PV diagram we search also a positive
area owing, for systems experiencing reversible volume-
change work transfer interactions, dW rev ¼ �PdV .

Travelling from points 1 to 2 in Fig. 1a, the closed sys-
tem is in contact with only the ðT Þ Thermal Reservoir while
the system and the Thermal Reservoir exchange heat. Trav-
T

T

S

3

21
P

P

V

3

21

a b

Fig. 1. The Kelvin–Planck’s statement of the Second Law of Thermody-
namics: (a) For the well established Thermodynamics; and (b) for the here
proposed Pressodynamics.
elling now from 2 to 3, the temperature of the system varies
but it is not in contact with any Thermal Reservoir because
there is no any heat transfer interaction. To proceed from 3
to 1, in order to close the cycle, and searching an enclosed
(positive) area on the TS diagram, the system should con-
tact with, at the least, another Thermal Reservoir.

A similar conclusion can be obtained for a closed system
experiencing volume-change work transfer interactions
that executes a cycle while in communication with only
one Pressure Reservoir, situation presented in Fig. 1b. A
Pressure Reservoir means to an external system that
imposes a pressure on the system’s boundary while the
two systems exchange work. The closed system is always
assumed to be in communication with a Pressure Reservoir
if the volume-change work transfer interaction is not equal
to zero. A process with a continuously varying pressure
should be understood as made in communication with an
infinite sequence of Pressure Reservoirs.

Travelling from points 1 to 2 in Fig. 1b, the closed sys-
tem is in contact with only the ðP Þ Pressure Reservoir,
while the system and the Pressure Reservoir exchange
work. Travelling now from 2 to 3, the system’s pressure
varies but it is not in communication with any Pressure
Reservoir because there is no any work transfer interac-
tion. To proceed from 3 to 1 in order to close the cycle,
and searching an enclosed (positive) area on the PV dia-
gram, the system should communicate with, at the least,
another Pressure Reservoir. The alternative Kelvin–
Planck’s statement reads then ‘‘It is impossible for any sys-
tem to operate in a Thermodynamic cycle and deliver a net
amount of work to its surroundings while in communica-
tion with only one Pressure Reservoir” or, in symbolsI

dW
� �

1RP

P 0 ð4Þ



V.A.F. Costa / International Journal of Heat and Mass Transfer 51 (2008) 2877–2888 2881
Thus, (unfortunately) it cannot exist a power engine oper-
ating in communication with only the atmospheric Pressure
Reservoir and extract mechanical work from it. It should
be noted that relations (3) and (4) are only apparently
equal, each referring to a different type of Reservoir.

At this stage, the normal way is, similarly to what hap-
pens with the well established Thermodynamics, to proceed
for a cycle executed by a closed system while in communi-
cation with two Pressure Reservoirs.
4.2. Cycle in communication with two Pressure Reservoirs

The analysis of a closed system in contact with two Heat
Reservoirs is usually made through the introduction of
Carnot’s cycle, which is shown in Fig. 2a for any operating
substance and in Fig. 2b for an Ideal Gas. In the present
alternative approach, the reversible cycle under analysis is
the one that is rectangular on a PV diagram, as presented
in Fig. 2c, being referred to as the alternative Carnot’s

cycle, and consists of a sequence of four reversible pro-
cesses: reversible isometric depressurization 1! 2 (by
cooling); reversible isobaric contraction 2! 3 with cooling
(the operating substance is a fluid that contracts upon cool-
ing at constant pressure) while communicating with the
ðP 2Þ Pressure Reservoir; reversible isometric pressurization
3! 4 (by heating); and reversible isobaric expansion
4! 1, with heating, while communicating with the ðP 1Þ
Pressure Reservoir. This cycle is presented in Fig. 2d for
an Ideal Gas.

The parallel between the fundamental cycles in the well
established Thermodynamics and in the here proposed
P

P

V

3

2

1
1T

T

S

3 2

1

2T

4

4

1Q

2Q

1Q

2Q

W
W

1P

P

V

3 2

1

2P

4 1W

2W

W

P

T

S

3

2

1

4

W1W

2W

a

c d

b

Fig. 2. The fundamental cycles in Thermodynamics and in Pressodynam-
ics: (a) The Carnot’s cycle on a TS diagram for any operating substance.
(b) The Carnot’s cycle in a PV diagram for an Ideal Gas. (c) The
alternative Carnot’s cycle in Pressodynamics on a PV diagram for any
operating substance. (d) The alternative Carnot’s cycle in Pressodynamics
on a TS diagram for an Ideal Gas.
Pressodynamics is presented in Fig. 2a and b, presented
only for comparison purposes with Fig. 2c and d, because
the property entropy is not needed in Pressodynamics. As
the system under analysis possesses only the (volume-
change) �PdV mode of reversible work transfer, processes
1! 2 and 3! 4 in Fig. 2c are zero-work processes.

As the cycle in Fig. 2c is executed reversibly, the system
under analysis can execute the same cycle in the reverse
sense, visiting the same sequence of equilibrium states in
the reverse order. Thus, if QC is the net heat transfer given
to the system in a cycle, and if W 1C and W 2C are the respec-
tive work transfer interactions with the Pressure Reservoirs
ðP 1Þ and ðP 2Þ, respectively, then the energy transfer interac-
tions of the direct and reversed reversible cycles are sym-
metric, that is

ðW 1C;W 2C;QCÞdirect ¼ �ðW 1C;W 2C;QCÞreverse ð5Þ

We proceed now extending the conclusion stated by the
Kelvin–Planck’s alternative form for the Second Law of
Thermodynamics for a closed system executing a cycle
while communicating with two Pressure Reservoirs. The
development considers only the power engine situation,
for which the searched work transfer interaction is nega-
tive, that is, there is a net work transfer interaction from

the system. Similar conclusions can be obtained for the re-
verse (work absorbing) engine.

For any unspecified power cycle similar to that of Fig. 2c
executed by system ðAÞ in Fig. 3, it can be written from the
First Law of Thermodynamics

�Q ¼ W ¼ W 1 þ W 2 ð6Þ

We search now the implications of the alternative Kelvin–
Planck’s statement over the W 1 and W 2 work transfer inter-
actions. From Eq. (6) it is clear that W 1 > 0 and W 2 > 0
leads to W > 0, situation that doesn’t correspond to the
power cycle under analysis. The signs of W 1 and W 2 com-
patible with Eq. (6) and W < 0 (power engine) are: (i)
W 1 < 0 and W 2 < 0; or (ii) W 1 and W 2 with opposite signs,
but verifying ðW 1 þ W 2Þ < 0.

The hypothesis (i) is analyzed with aid of Fig. 3a, in
which is represented a closed system ðAÞ executing an
unspecified cycle while in communication with the Pressure
Reservoirs ðP 1Þ and ðP 2Þ, with P 1 6¼ P 2, and an auxiliary
1W

2W

( )1P

( )2P

Q ( )A

( )B

BW

BQ

1W( )1P

( )AQ

( )2P 2W

1CW

2CW

( )C CQ

a b

Fig. 3. Implication of the alternative Kelvin–Planck’s statement for a
closed system executing a cycle while in communication with two Pressure
Reservoirs: (a) For hypothesis (i); and (b) for irreversibility accounting.
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system ðBÞ that executes a cycle while in communication
with only one Pressure Reservoir, say ðP 2Þ. The alternative
Kelvin–Planck’s statement applied to system ðBÞ requires
that

W B P 0 ð7Þ

Systems ðAÞ and ðBÞ can be sized such that W 2 ¼ �W B, sit-
uation that is compatible with the assumed negativity of
W 2 in hypothesis (i). Thus, it follows that the ðP 2Þ Pressure
Reservoir also executes a cycle at the end of the cycles exe-
cuted by systems ðAÞ and ðBÞ. As systems ðAÞ and ðBÞ and
the ðP 2Þ Pressure Reservoir execute a cycle, also the com-
posite system ððAÞ þ ðBÞ þ ðP 2ÞÞ executes a cycle while in
communication with only the ðP 1Þ Pressure Reservoir.
For the composite system, the alternative Kelvin–Planck’s
statement requires that W 1 P 0, situation that is incompat-
ible with the negativity of W 1 assumed in (i). A similar con-
clusion, indicating that W 1 and W 2 cannot have the same
sign, can be obtained considering the system ðBÞ in commu-
nication with the ðP 1Þ Pressure Reservoir.

The only situation compatible with both the First and
Second Laws is that assumed in hypothesis (ii), that is,
W 1 and W 2 must have opposite signs. For further discus-
sions we assume that W 1 < 0 (strictly negative) and that
W 2 > 0 (strictly positive), being the situation of W 1 ¼ 0
not allowed because W 1 6¼ 0 for a power engine.

To obtain the relation between the work transfer inter-
actions of reversible and irreversible cycles operating while
in communication with the same two Pressure Reservoirs,
consider Fig. 3b, where the unspecified cycle ðAÞ and the
alternative Carnot’s cycle ðCÞ share the two Pressure Res-
ervoirs ðP 1Þ and ðP 2Þ. The alternative Carnot’s cycle is sized
and its sense selected such that

W 1 þ W 1C ¼ 0 ð8Þ

Under these conditions, the ðP 1Þ Pressure Reservoir exe-
cutes a cycle, with a null net work transfer interaction,
and the composite system ððAÞ þ ðCÞ þ ðP 1ÞÞ also executes
a cycle while in communication with only the ðP 2Þ Pressure
Reservoir. Applying again the alternative form of the Kel-
vin–Planck’s statement one obtains, for the composite
system,

W 2 þ W 2C P 0 ð9Þ

relation that is equivalent to

W 2

�W 1

� �
P

�W 2C

W 1C

� �
ð10Þ

noting that �W 1 > 0 due to the assumed strict negativity of
W 1, and W 1C > 0 by Eq. (8).

The relation present in (10) is the alternative inequality
that represents the Second Law of Thermodynamics for a
cycle executed by a closed system while in communication
with two Pressure Reservoirs. In the limiting situation of
equality
W 2

�W 1

� �
¼ �W 2C

W 1C

� �
ð11Þ

From Eq. (8), from the First Law statements
�Q ¼ W 1 þ W 2 [for cycle ðAÞ] and �QC ¼ W 1C þ W 2C

[for the alternative Carnot’s cycle ðCÞ], and from Eq. (11)
it can be formed the system of equations

W 1C ¼ �W 1

�Q ¼ W 1 þ W 2

�QC ¼ W 1C þ W 2C
W 2

�W 1
¼ �W 2C

W 1C

8>>><
>>>:

ð12Þ

from which, assuming known W 1 and W 2, one obtains

ðW 1C;W 2C;QCÞ ¼ �ðW 1;W 2;QÞ ð13Þ

Comparing Eqs. (13) and (5) one concludes that in the
limiting equality situation of relation (10) the correspond-
ing cycle ðAÞ is the reverse of the alternative Carnot’s cycle
ðCÞ, and vice versa. As the alternative Carnot’s cycle is a
reversible cycle, the limiting situation of equality in relation
(10) corresponds to a reversible cycle executed by the
unspecified system ðAÞ while in communication with the
two Pressure Reservoirs ðP 1Þ and ðP 2Þ. The alternative Car-
not’s cycle can be abandoned, by noting that
ð�W 2C=W 1CÞ ¼ ðW 2=� W 1Þrev, where the subscript rev
stands for a reversible cycle, executed by a system experi-
encing volume-change work transfer interactions, and rela-
tion (10) reads

W 2

�W 1

� �
P

W 2

�W 1

� �
rev

ð14Þ

This relation is the inequality that represents the alternative
form for the Second Law of Thermodynamics, for a cycle
executed by a closed system while in communication with
two Pressure Reservoirs. Defining the Pressodynamic effi-

ciency of the cycle as

gP ¼
net work done by the system

work done to the system
ð15Þ

one obtains

gP ¼
�ðW 1 þ W 2Þ
�W 1

¼ 1þ W 2

W 1

ð16Þ

For the reversible cycle in Fig. 2c it can be concluded that

W 1 ¼ �P 1ðV 1 � V 4Þ ð17aÞ
W 2 ¼ �P 2ðV 4 � V 1Þ ð17bÞ

and, after division

W 2

W 1

� �
rev

¼ � P 2

P 1

ð18Þ

The Pressodynamic efficiency of the alternative Carnot’s
cycle can then be obtained as

gP ;rev ¼ 1� P 2

P 1

ð19Þ
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what is the parallel result for the Thermodynamic effi-
ciency of the Carnot’s cycle in the well established
Thermodynamics.

It must be noted that the pressures mentioned here are
the pressures at the boundaries of the system where vol-
ume-change work transfer interactions take place, remem-
bering that, as stated in Section 4.1, it is the pressure
imposed at the boundary while the two systems exchange
volume-change work.

Relation (14) can be rewritten as

1þ W 2

W 1

� �
6 1þ W 2

W 1

� �
rev

ð20Þ

which is equivalent to

gP 6 gP ;rev ð21Þ

As expected, the Pressodynamic efficiency is a maximum
when the executed cycle is reversible.

The sequence of processes forming the cycle executed by
system ðAÞ was unspecified, being thus ðW 2=� W 1Þrev inde-
pendent of the working fluid and of the sequence of pro-
cesses that form the cycle. Under such conditions, the
lower limit value ðW 2=� W 1Þrev should be a function of
only P 1 and P 2 given the assumed existence of two different
Pressure Reservoirs.

It can be written that

W 2

�W 1

� �
rev

¼ f ðp1; p2Þ ð22Þ

where f is an unknown function and p1 and p2 are two dif-
ferent numbers indicated by the scale of one manometer,
being thus the empirical pressure corresponding to the pres-
sure of the Pressure Reservoirs. Considering a reversible
cycle executed by a closed system while in communication
with the Pressure Reservoirs ðp1Þ and ðp3Þ as a cascade of
two reversible cycles executed while in communication
with, respectively, the Pressure Reservoirs ðp1Þ and ðp2Þ,
( )1P

( )2P

( )3P

1W

2W

2W−

3W

Fig. 4. The cycle executed in communication with the ðP 1Þ and ðP 3Þ
Pressure Reservoirs as a cascade of two cycles executed while in
communication with the auxiliary Pressure Reservoir ðP 2Þ.
and ðp2Þ and ðp3Þðp1 > p2 > p3Þ, as illustrated in Fig. 4,
it can be written that

W 3

�W 1

� �
rev

¼ f ðp1; p3Þ ð23aÞ

W 3

�ð�W 2Þ

� �
rev

¼ f ðp2; p3Þ ð23bÞ

Dividing Eqs. (23a) and (23b), and using Eq. (22) to the ra-
tio ðW 2=� W 1Þrev it can be concluded that

f ðp1; p2Þ ¼
f ðp1; p3Þ
f ðp2; p3Þ

ð24Þ

As the left side of Eq. (24) is independent of p3, it must be

f ðp1; p3Þ
f ðp2; p3Þ

¼ /ðp1Þ=/ðp3Þ
/ðp2Þ=/ðp3Þ

¼ /ðp1Þ
/ðp2Þ

¼ f ðp1; p2Þ ð25Þ

Making UðpÞ ¼ 1=/ðpÞ, Eq. (22) can be rewritten as

W 2

�W 1

� �
rev

¼ Uðp2Þ
Uðp1Þ

ð26Þ

a result that can be generalized to obtain the work transfer
interaction W, exchanged while in communication with the
arbitrary ðpÞ Pressure Reservoir, from the work transfer
interaction W 0 exchanged while in communication with
the ðp0Þ reference Pressure Reservoir, as

W 0

�W

� �
rev

¼ Uðp0Þ
UðpÞ ð27Þ

The measurement of the ratio between the work transfer
interactions in any reversible cycle while communicating
with the ðpÞ and ðp0Þ Pressure Reservoirs leads to
UðpÞ ¼ P , the absolute Thermodynamic pressure, and Eq.
(27) reads

P ¼ P 0

�W
W 0

� �
rev

ð28Þ

relation that defines the Pressodynamic pressure scale, or
the Thermodynamic pressure scale, in the basis of only
one constant fiducial point. Chosen the triple point of
water, an invariant, as the fiducial point, P 0 ¼ 611:3 Pa,
Eq. (28) gives

P ¼ 611:3 � W
W ð611:3 PaÞ

� �
rev

ð29Þ

and the Pressodynamic (or Thermodynamic) absolute pres-
sure scale is sketched in Fig. 5. This same absolute scale
was derived also by Bejan [1,2]. Eq. (29) is the alternative
to the Thermodynamic temperature scale in the well estab-
lished Thermodynamics. At this point it can be questioned
if pressure involved in the evaluation of the volume-change
work transfer interactions, with a strong mechanical mean-
ing, can be taken as the Thermodynamic pressure. This
point has been worked out by Reynolds and Perkins [9],
where a demonstration is given in what concerns the
equivalence of the mechanical and the Thermodynamic
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pressures, based on well established Thermodynamics’
arguments.

Introduction of the result given by Eq. (26) in relation
(14), noting that UðpÞ ¼ P , leads to an alternative form
of this last relation that reads
W 1

P 1

þ W 2

P 2

P 0 ð30Þ
which is the most useful result for a cycle executed by a
closed system while in communication with two Pressure
Reservoirs.
Q

1W

( )1P ( )2P

2W

( )A

( )NP ( )1NP +

NCW ( )1N CW +

NW 1NW +

CQ
( )C

Fig. 6. The Second Law extended to a closed system executing a cycle
while in communication with any number of Pressure Reservoirs.
4.3. Cycle in communication with any number of pressure

reservoirs

The preceding developments begin with the alternative
Kelvin–Planck’s statement for a cycle executed by a closed
system while communicating with only one Pressure Reser-
voir, and follows to a cycle executed by the same closed sys-
tem while communicating with two Pressure Reservoirs.
The next step is to obtain the equivalent expression of
(30) for a closed system executing a cycle while in
communication with any number of Pressure Reservoirs,
which is made following the method of mathematical
induction, as proposed by Bejan [2] to the well established
Thermodynamics.

For the cycle executed while in communication with
only the ðP 1Þ Pressure Reservoir, the alternative Kelvin–
Planck’s statement [relation (4)] gives

W 1 P 0 ð31Þ

or, dividing by P 1

W 1

P 1

P 0 ð32Þ

For the cycle executed while in communication with the two
Pressure Reservoirs ðP 1Þ and ðP 2Þ we have relation (30).

For the cycle executed while in communication with the
N Pressure Reservoirs ðP nÞ, n ¼ 1; 2; . . . ;N , it is assumed
that
XN

n¼1

W n

P n
P 0 ð33Þ

expression from which it remains to be proved thatXNþ1

n¼1

W n

P n
P 0 ð34Þ

To test the validity of expression (34) consider a closed
system ðAÞ that executes a cycle while in communication
with N þ 1 Pressure Reservoirs ðP 1Þ, ðP 2Þ, . . . , ðP NÞ,
ðP Nþ1Þ, as sketched in Fig. 6. To apply the relation (33),
assumed valid for a cycle executed while in communication
with N Pressure Reservoirs, the Pressure Reservoir ðP Nþ1Þ
is made to go to its original state by communication with
the reversible cycle ðCÞ sized such that

W Nþ1 þ W ðNþ1ÞC ¼ 0 ð35Þ

The composite system ððAÞ þ ðP Nþ1Þ þ ðCÞÞ, enclosed by a
dashed line in Fig. 6, executes thus a cycle while in commu-
nication with N Pressure Reservoirs, and application of
relations (30) and (33) lead toXN

n¼1

W n

P n
þ W NC

P N
P 0 ð36Þ

For the reversible cycle ðCÞ, which is executed while in
communication with the two Pressure Reservoirs ðP N Þ
and ðP Nþ1Þ it can be written from the equality situation
of relation (30) that

W NC

P N
þ W ðNþ1ÞC

P Nþ1

¼ 0 ð37Þ

Relation (36) can now be rewritten as

XN

n¼1

W n

P n
� W ðNþ1ÞC

P Nþ1

P 0 ð38Þ

and then, invoking Eq. (35) to obtain W ðNþ1ÞC, one arrives
to the searched result stated by relation (34). Relation (33)
is thus valid for any N P 1.

Relation (33) was deduced considering a stepwise varia-
tion of the system’s boundary pressure as imposed by the
discrete Pressure Reservoirs. One can now extend this result
by considering the situation of a continuous variation of the
system’s boundary pressure as the cycle is executed while in
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communication with an infinite sequence of Pressure Reser-
voirs, each contributing with a infinitesimal work transfer
interaction dW while maintaining the system’s boundary
pressure at P. The sum of relation (33) is, in this case,
replaced by one cyclic integral to giveI

dW
P

P 0 ð39Þ

or thenI
� dW

P
6 0 ð40Þ

remembering, once again, that the involved pressure is the
pressure at the boundary where the volume-change work
transfers have place. This result can be seen as an alterna-
tive form of the Clausius inequality for a system exchang-
ing volume-change work with its neighborings.

The limiting situation of equality in Eq. (40) refers to a
reversible cycle, for whichI
� dW rev

P
¼ 0 ð41Þ

If the cyclic integral of Eq. (41) is null, dW rev=P represents a
change in a property of the system. Examining Eq. (2) it
can be concluded that this property is the volume V, that is

dV ¼ � dW rev

P
ð42Þ

It will be reinforced further that subscript rev refers not
only to a reversible process but to a process that is inter-
nally reversible, that is, in which interior there are no irrev-
ersibilities associated with the volume-change work
transfer interactions.

The reversible work transfer interaction �dW rev is not
an exact differential but a Pfaffian, acting the absolute pres-
sure at the boundary P as an integrating denominator to
�dW rev in order to make the relation �dW rev=P an exact
differential.

4.4. Process in communication with any number of pressure

reservoirs

The preceding results refer to cycles, following the dis-
cussion to arbitrary processes between the arbitrary states
1 and 2.

Integration of Eq. (42) over the reversible path linking
states 1 and 2 leads to

V 2 � V 1 ¼
Z 2

1

� dW rev

P
ð43Þ

The arbitrary process 1! 2 can be taken as a part of the
cycle 1! 2! 1, where the 2! 1 process is reversible
and the 1! 2 process is arbitrary in terms of reversibility.
For the entire cycle, relation (40) applies to giveZ 2

1

� dW
P
þ
Z 1

2

� dW rev

P
6 0 ð44Þ
or thenZ 2

1

� dW
P|fflfflfflfflfflffl{zfflfflfflfflfflffl}

volume transfer

ðnon-propertyÞ

6 V 2 � V 1|fflfflfflffl{zfflfflfflffl}
volume-change

ðpropertyÞ

ð45Þ

The alternative form of the Second Law of Thermody-
namics of the here proposed Pressodynamics states thus
that the volume transfer never exceeds the volume-change.
The difference between the left and the right hand sides of
relation (45) gives

V gen|{z}
volume generation

ðnon-propertyÞ

¼ V 2�V 1|fflfflfflffl{zfflfflfflffl}
volume-change

ðpropertyÞ

�
Z 2

1

�dW
P|fflfflfflfflffl{zfflfflfflfflffl}

volume transfer

ðnon-propertyÞ

P0

ð46Þ

where V gen P 0 is the volume generation or volume produc-

tion, which has never a negative value and leads to the one-
way behavior of the Universe, similar to that stated by the
entropy increase of the Universe in the well established
Thermodynamics. This volume generation is not so strange
as it sounds at first contact, as it is seen in the following
examples and also verified from Cosmological arguments
and analysis [6].

It is based on this result that the Thermodynamic and
the Cosmological time arrows are unified, and to the Clau-
sius statement saying that the entropy of the Universe is
increasing can be added the one saying that the volume
of the Universe is also increasing.

The volume generation concept has also been taken into
account in some recent studies on Thermodynamics con-
ducted by Gaggioli [10,11].
5. Evaluation of the volume generation

5.1. Preliminary notes

Before analyzing two elucidative examples including the
evaluation of the volume generation, some aspects need to
be highlighted in order to conduct the analysis of the
systems.

Similarly to what is made in the well established Thermo-
dynamics, a balance equation for volume can be established
for a closed system. From Eq. (46), taking present that pres-
sure involved in the integral is the pressure at the boundary
where the volume-change work transfer interaction takes
place, one can write in a differential form that

dV gen ¼ dV þ
XM

j¼0

dW d
j

P j
P 0 ð47Þ

or, in a time rate basis

_V gen ¼
dV
dt
þ
XM

j¼0

_W d
j

P j
P 0 ð48Þ
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Fig. 7. Filling of an initially evacuated container: (a) Schematic view of
the container; and (b) modeling of the filing process.
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where the summation extends to all the N portions of the
boundary through which system exchanges energy in the
form of volume-change work transfer interactions. Super-
script d in Eqs. (47) and (48) reinforces that we are dealing
with the energy transfer in the form of deformation (vol-
ume-change) work transfer interactions.

The alternative form of the Clausius’ inequality can be
easily understood using Eq. (47). If this equation is inte-
grated for a cycle, noting that along the portions of such
a cycle it is dV gen P 0 and that it is thus

H
dV gen P 0,

and that the cyclic integral of volume (a property) is null,
one arrives to Eq. (40). Thus, another way to see the alter-
native form of the Clausius’ inequality is to say that the
integral of dV gen over a cycle can only be positive. Only
for a reversible cycle it is dV gen ¼ 0 for any portion of the
cycle and

H
dV gen ¼ 0. This same treatment can be given

to the physical interpretation of the original Clausius’
inequality of the well established Thermodynamics in terms
of heat transfer interactions and absolute temperature.

It is to be stressed that a boundary is a zero thickness
surface, such as pointed out by Bejan [2], and that no dis-
continuities can exist in temperature or pressure across a
boundary. Both sides of the boundary share the same tem-
perature or pressure values. A wall, separating parts of a
system, is not a boundary but itself a system, through
which temperature and pressure discontinuities can take
place. This is a fundamental aspect to take into account,
in order to correctly conduct the analysis of Thermody-
namic systems. It is highlighted in Bejan [2] that the
entropy generation takes place at the walls. However, due
to the intrinsic character of the irreversibilities associated
with the volume-change work transfer interactions, which
are related with the non-uniformities of pressure inside
the system (a volume-changing mass of fluid), the volume
generation takes place inside the system itself.

Also extremely important is the fact that the work trans-
fer interactions represent net energy transferred from or to

the system. In this way, any kind of losses (irreversibilities)
we are accounting for are internal irreversibilities, an aspect
that was pointed out in Eq. (42). If external irreversibilities
exist, they must be taken into account when evaluating the
net energy transfers experienced by the system, in the form
of heat or work transfer interactions, but they are not inter-
nal irreversibilities of the system. The choice of the bound-
ary enclosing the system is the obvious and appropriate
way to consider what are external irreversibilities and what
are internal irreversibilities.

5.2. Filling of an initially evacuated container

Consider the rigid and initially evacuated container of
inner volume V represented in Fig. 7. The container is sur-
rounded by the environment at temperature T 0 and pressure
P 0. After a given instant in time the valve represented in
Fig. 7a is maintained slightly open, and air slowly enters
the container just to the moment when the pressure of the
air in the interior of the container equals the ambient pres-
sure, P 0. The walls of the container are sufficiently thin or
conductive such that the temperature of the air entered inside
the container, after some time, equals the temperature of the
ambient air, T 0. Even if this system can be treated as an open
system, it can be also treated as a closed system, what was
made also by Bejan [2]. This same system is treated as an
open system in the companion paper [7]. The most important
step to treat this system as a closed system is to take into
account that as the air entered inside the container reaches
the ðT 0; P 0Þ conditions, the volume V occupied by air inside
the container equals the volume of the same mass of air
when, initially, outside the container, was incorporated into
the ambient air.

This system can be schematically represented as given in
Fig. 7b. Environment exerts pressure P 0 over the auxiliary
separating piston A of negligible mass and thickness. This
separating piston moves and enters inside the initially evac-
uated container, thus giving rise to the filling process. It
must be noted that environment e is a closed system. Vol-
ume balance for the environment gives

dV e ¼ �
dW d

e

P 0

þ dV gen;e ð49Þ

The work transfer dW d
e is null as pressure is null on the

right-hand side of the auxiliary piston, and no work trans-
fer can be absorbed by the evacuated right-hand side of the
container. Irreversibility of this process is associated with
this lack of mechanical equilibrium [12]. It is thus
dV gen ¼ dV , and at the end of the filling process it is

V gen ¼ ðV 2 � V 1Þ ¼ V ð50Þ

It is interesting to note that the volume generation can be
seen as the volume increase of the Universe, which ex-
panded to fill the initially evacuated container.

The maximum available work that can be given by the
environment during its expansion against the zero pressure
of the initially evacuated container is

W d
lost ¼ �P 0V gen ¼ �P 0V ð51Þ

which is a lost available work as no devices are available to
extract and deliver it as useful work.

Analysis of the entropy generation for this system using
the well established Thermodynamics gives that [2]

Sgen ¼
P 0V
T 0

ð52Þ
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and that

W lost ¼ �T 0Sgen ¼ �P 0V gen ¼ �P 0V ð53Þ

and surprisingly it is obtained that, for this system,

P 0V gen � T 0Sgen ¼ 0 ð54Þ

It will be explored that this equality is valid for some kinds
of systems experiencing some particular processes in the
companion paper [7], a key result in what concerns the
Fundamental Relation of Thermodynamics.

5.3. Motion of a piston driven by a pressure difference

This problem is analyzed in parallel with a system com-
monly analyzed in the well established Thermodynamics, in
order to continue the parallel developments of Thermody-
namics and Pressodynamics. It must be stressed that
entropy generation takes place at the walls, and that it
occurs even in steady-state processes. By its own turn, vol-
ume generation takes place inside the systems, and it is
associated with the unsteady (and mechanical non-equilib-
rium) processes experienced by the systems in which vol-
ume-change work transfer interactions occur.

Consider the wall in Fig. 8a, whose left vertical surface is
at absolute temperature T A and whose right vertical wall is
at absolute temperature T B, with T A > T B. A small amount
of heat dQ flows from left to right. From the well estab-
lished Thermodynamics one obtains that the entropy bal-
ance for the wall gives [2]

dSgen ¼ �
dQ
T A
þ dQ

T B
¼ dQ

ðT A � T BÞ
T AT B

¼ dQ
T B

1� T B

T A

� �
ð55Þ

If a reversible (Carnot) thermal engine was working based
on absolute temperatures T A and T B, the work transfer
interaction of such an engine with its neighborings would be

dW rev ¼ �dQgC ¼ �dQ 1� T B

T A

� �
ð56Þ

Eq. (56) gives the maximum available work that can be ob-
tained from the absolute temperatures T A and T B. No such
a Carnot engine is present to deliver this work, which is
lost. Combination of Eqs. (55) and (56) give us that

dW lost ¼ �T BdSgen ð57Þ
AT
BT

AP BP
Qδ

AWδ

a b

Fig. 8. Irreversible processes: (a) Steady heat transfer through a conduc-
tive wall; and (b) unsteady volume-change work transfer through a
moving piston.
Consider now the system presented in Fig. 8b, which
consists on the assembly of a frictionless and negligible
mass piston in a cylinder. Left hand side chamber is main-
tained at absolute pressure P A and the right-hand side
chamber is maintained at absolute pressure P B, with
P A > P B. Chambers are separated by the piston. Initially
the piston is locked, and it is suddenly unlocked, moving
from left to right driven by the pressure difference P A � P B.

Volume balance equations for sub-systems A and B give,
respectively

dV A ¼ �
dW d

A

P A
þ dV gen;A ð58aÞ

dV B ¼
dW d

A

P B
þ dV gen;B ð58bÞ

which can be added to give, for the overall system under
analysis, noting that dV A þ dV B ¼ 0

dV gen ¼ dV gen;A þ dV gen;B ¼
dW d

A

P A
� dW d

A

P B

¼ �dW d
A

ðP A � P BÞ
P AP B

¼ � dW d
A

P B
1� P B

P A

� �
ð59Þ

where it is to be noted that Pressure Reservoir A is releas-
ing volume-change work to the piston, with dW d

A ¼
�P AdV A < 0, and that the piston is given volume-change
work �dW d

A to Pressure Reservoir B. No work is lost in
the piston-cylinder assembly, as the piston is a frictionless
and has negligible mass. If mechanical equilibrium would
exist, the volume-change deformation work transfer inter-
action would be lower than j dW d

A j, as it is P B < P A. Once
again, irreversibility of the process is associated with the
lack of mechanical equilibrium [12]. It is clear the parallel
between Eqs. (59) and (55), even if they refer to very differ-
ent situations and processes.

If a reversible engine was working, based on absolute
pressures P A and P B, the volume-change work transfer
interaction of such an engine with its neighborings would
be

dW d
rev ¼ dW AgP ;rev ¼ dW A 1� P B

P A

� �
ð60Þ

where gP ;rev is the reversible Pressodynamic efficiency. Eq.
(60) gives the maximum available work that can be ob-
tained from the absolute pressures P A and P B. Note once
again the parallel between Eqs. (60) and (56). No such a
reversible engine is present to deliver this work, which is
lost. Combination of Eqs. (59) and (60) gives us that

dW d
lost ¼ �P BdV gen ð61Þ

where, once again, we can see the parallel between Eqs. (61)
and (57).

Insertion of the main developments made in this work in
the framework of the well established Thermodynamics is
presented in the companion paper [7], where some new
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and interesting Thermodynamic results are obtained and
discussed.

6. Conclusions

A parallel structure of the well established Thermody-
namics, here called Pressodynamics, is presented, and
results are derived that become very similar and make
parallel the two different structures. The fundamental
difference is the property volume as the adequate one to
quantify the irreversibility of the processes undergone by
Thermodynamic systems experiencing volume-change
work transfer interactions. It is obtained a conclusion very
similar to the principle of entropy increase of the Universe,
but stated for the volume increase of the Universe. This
result is in accordance with the well established expansion
of the Universe, which precludes a gravitational collapse
[6].

As shown by Bejan [5], the parallelism existing between
Thermodynamics and Pressodynamics is also observed
when irreversible engines driven by Temperature Reser-
voirs and irreversible engines driven by Pressure Reservoirs
are analyzed from the viewpoint of the well established
Thermodynamics.

It should be clarified that the volume is, in our today
experience, a geometrical property, that results from the
composition of some elementary lengths and forms (geom-
etry) of a body. The obtained results, from which the prop-
erty volume emerges as the adequate one to quantify
irreversibility associated with deformation work, consider
the volume as a property evaluated from energetic consid-
erations, in a way similar to what happens with entropy in
the well established Thermodynamics. Thus, a better
understanding of these results probably needs some
abstraction and avoid of geometrical considerations when
manipulating and evaluating the volume generation.

The rational sign convention adopted for the work
transfer interactions shows to be the adequate one that
leads to an increase of the volume of the Universe, similarly
to what happens in the well established Thermodynamics,
with the heat transfer interaction sign convention and the
increase of the entropy of the Universe.

At the present time, there are essentially two ways to
define the sense of the time arrow: the Thermodynamic
time arrow (the time elapses in such a way that the entropy
of the Universe can only increase), and the Cosmological
time arrow (the time elapses in such a way that the volume
of the Universe can only increase). The obtained results
lead to a unification of these arrows, emerging the
expansion of the Universe as a natural Thermodynamic
result.
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